
Lecture 4 – Synchronization on 
complex networks

Mattia Frasca (Univ. of Catania)



Contents

• What is synchronization?

• A simple model due to Kuramoto

• General model of coupled oscillators

• The Master Stability Function

• Control of synchronization



Christiaan Huygens

What is synchronization?

https://www.youtube.com/watch?v=Aaxw4zbULMs

https://www.youtube.com/watch?v=Aaxw4zbULMs


Metronomes

ϑi ϑi

ϑi ϑi ϑi ϑi
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Metronomes do not synchronize

Metronomes do synchronize



The model of metronomes
• A single metronome on a mobile base

• Neglecting the damping of the base motion, the coupling term
(for example for a two metronome system) can be found

• It can be analitically proven that metronomes synchronize [J.
Pantaleone, Am. J. Phys., 2002]
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Systems that synchronize: a classical 
example

• Each firefly emits light flashes with
a regular internal cycle
• Each firefly adjusts its lighting
frequency as a function of its
neighbors



Other examples

https://www.youtube.com/watch?v=eAXVa__XWZ8
https://www.youtube.com/watch?v=W-nTOo95Yy8

../../../../../mattia/lucidi/viaggio nei sistemi complessi/opening_day_high.wmv
https://www.youtube.com/watch?v=eAXVa__XWZ8
https://www.youtube.com/watch?v=W-nTOo95Yy8


The Kuramoto model
• Dynamics of the oscillators (global coupling)

• Order parameter

• Dynamics
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Coupled oscillators
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• Equations

– f is the dynamics of each uncoupled unit (units are 
identical), order n

– aij are the elements of the adjacency matrix

– H is a constant matrix (the inner coupling)

– σ is the coupling coefficient

• Equivalent formulation
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Diffusive coupling
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Coupled oscillators - example
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• Let us consider N Rössler units, coupled through two
different configurations…



The Rössler system
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Coupled oscillators - example
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• N=3 Rössler units, coupled through the second
variable, network as in figure

ሶ𝑥3 = −𝑦3 − 𝑧3
ሶ𝑦3 = 𝑥3 + 𝑎𝑦3 + 𝜎(𝑦2 − 𝑦3)

ሶ𝑧3 = 𝑏 + 𝑧3(𝑥3 − 𝑐)

ሶ𝑥2 = −𝑦2 − 𝑧2
ሶ𝑦2 = 𝑥2 + 𝑎𝑦2 + 𝜎(𝑦1 − 𝑦2) + 𝜎(𝑦3 − 𝑦2)

ሶ𝑧2 = 𝑏 + 𝑧2(𝑥2 − 𝑐)



Coupled oscillators - example
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• N=3 Rössler units, coupled through the second
variable, network as in figure
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The synchronization error
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• The network is (globally) synchronized if

• Equivalent definition of the error
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A network of Rössler oscillators
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The network, which was not synchronized for small coupling, 
becomes synchronized for larger coupling



Same network, different coupling
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Synchronization is never
achieved, even if the 
coupling strength is
increased!



Summing up…

• Two networks: one synchronizes for large enough
coupling strength, the other does not (for any
coupling strength)

• However, the coupling is always diffusive, and since

the synchronous manifold x1=x2=…=xN=xs exists in

both cases!

• What is the difference here?

𝐿1 = 0

ሶ𝑥𝑠 = 𝑓(𝑥𝑠)



Stability of the synchronous state

• Reference model

• Synchronous state

with

• Compact form

where
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Stability of the synchronous state

• Let’s define the new variables

• Linearization around s(t)

with

• Consider now

with T such that
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Stability of the synchronous state
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• Blocks are identical

• Master stability equation

• Master stability function (MSF)
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Considering real
eigenvalues

(i.e. =0)

0)(max h
eigenvalue of Lh

Synchronization

The Master Stability Function
[Pecora and Carroll, 1998]



The Master Stability Function
[Pecora and Carroll, 1998]

• Type I: networks never
synchronizable

• Type II:

• Type III:

Requires that:
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Network of Rössler oscillators
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Control of synchronization

• A network of coupled chaotic oscillators may not satisfy the 
conditions for synchronization (e.g., the eigenvalues of the 
Laplacian are outside the bounds of master stability function, 
MSF)

• Even for networks reaching synchronization, control may be 
needed to steer the system towards a specific trajectory
(opposed to a self-organized solution)



How can we control a network?

𝑢𝑖 = 𝑘(𝑥𝑟𝑒𝑓 − 𝑥𝑖)

ሶ𝑥𝑟𝑒𝑓 = 𝑔(𝑥𝑟𝑒𝑓)

ሶ𝑥𝑖 = 𝑓 𝑥𝑖 + 𝜎෍

𝑗

𝑎𝑖𝑗ℎ(𝑥𝑗 , 𝑥𝑖)

ሶ𝑥𝑖 = 𝑓 𝑥𝑖 + 𝜎෍

𝑗

𝑎𝑖𝑗ℎ(𝑥𝑗 , 𝑥𝑖) +𝑢𝑖

Coupled dynamics with control

control

Coupled dynamics



Can we do better?

• Can we control the whole network by applying
feedback only to a subset of nodes?



• It is a feedback control strategy for 
synchronization and consensus in complex 
dynamical networks 

• A virtual leader (the pinner) is added to 
the network and defines the 
desired trajectory, controlling only a small 
fraction of the network nodes (the pinned 
nodes) 

• The control action is a function of the 
pinning error vector, whose i-th
component is given by the difference 
between the output of the pinner and the 
output of the i-the node

• Classical pinning control targets a 
homogeneous collective behavior

Pinning control



Pinning control of synchronization

ሶ𝑥𝑖 = 𝑓 𝑥𝑖 + 𝜎෍

𝑗

𝑎𝑖𝑗(𝑥𝑗 − 𝑥𝑖) +𝑢𝑖; 𝑖 = 1,…𝑁

ሶ𝑠 = 𝑓 𝑠

Network units

Virtual node

Control 𝑢𝑖 = 𝑘𝛿𝑖(𝑠 − 𝑥𝑖)

Pinned nodes 𝛿𝑖 = 1

Augmented network, xN+1(t)=s(t)

ሶ𝑥𝑖 = 𝑓 𝑥𝑖 +෍

𝑗

𝑤𝑖𝑗 (𝑥𝑗 − 𝑥𝑖); i = 1,… , N + 1



Pinning control of synchronization

ሶ𝑥𝑖 = 𝑓 𝑥𝑖 +෍

𝑗

𝑤𝑖𝑗 (𝑥𝑗 − 𝑥𝑖); i = 1,… , N + 1

Control is achieved iff the augmented network 
synchronizes

lim
𝑡→+∞

𝑥𝑖 − 𝑥𝑗 = 0 lim
𝑡→+∞

𝑥𝑖 − 𝑠 = 0

F. Sorrentino, M. di Bernardo, F. Garofalo, and G. Chen, Controllability of complex
networks via pinning, Phys. Rev. E 75, 046103, 2007



Pinning control of synchronization

How to select the nodes to pin? Is there a relationship with some 
topological properties?

• [Wang & Chen, Phys. A, 2002]: degree-based selective approaches
are a preferable strategy with respect to random choices of nodes.

• [Chen, Liu, Lu, TCAS I, 2007]: if the directed network admits a 
spanning tree, then control can be achieved by only pinning the 
root node.

• [Lu, Li, Rong, Automatica, 2010]: if the network does not admit a 
spanning tree, then at least one node in each root strongly
connected component has to be pinned.



Control of synchronization in a group
of nodes

L. V. Gambuzza, M. Frasca, V. Latora, "Distributed control of synchronization of a 
group of network nodes", IEEE Trans. Automatic Control, March 2019.



Problem statement

Consider the dynamical network formed by N diffusively coupled 
identical nodes

where xi are the state variable of node i, σ>0 is the coupling 
strength and H is a nxn constant matrix of 0-1 coefficients, find the 
network distributed controllers ui of the form 

such that the nodes of an arbitrary set, say Sn2, synchronize to 
each other



Main result



For two nodes, A and B



Sketch of the proof

Dynamical network with control

1. Linearization

2. State transformation



Sketch of the proof

Dynamical network with control

Dynamics of the transverse modes (the blocks are identical!)



Remarks

▪ It is not important to which nodes the nodes to synchronize 
are connected but only their number

▪ The approach can also apply within the MSF framework

▪ The results can be extended to the case of heterogeneous 
units, provided that the nodes to be synchronized have the 
same dynamics



An example
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 Chua’s oscillators

 Nodes to synchronize: 4 and 12



An example
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Without control

For the given value of , the network
without control is not synchronized
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With control
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Control enables synchronization 
between node 4 and 12, while the rest 
of the network remains not 
synchronized 



With a direct link between nodes 4 
and 12

The introduction of a direct link between 
nodes 4 and 12 is not sufficient to induce 
synchronization in them
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Take home message

▪ Act on their neighbors!
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Summary

• Examples of synchronization, models

• Synchronization of dynamical oscillators on 
complex networks: existence and stability

• Control of synchronization: pinning control, 
control of synchronization of a group of nodes


