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What is synchronization?
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Christiaan Huygens

https://www.youtube.com/watch?v=Aaxw4zbULMs



https://www.youtube.com/watch?v=Aaxw4zbULMs

Metronomes

Metronomes do not synchronize
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Metronomes do synchronize



The model of metronomes

e A single metronome on a mobile base

2 mr i mr. cos4 \d?
d ‘29+ C'mgsin9+g i -1 d'9+ 2l d ;(:O
dt I dt I dt

e Neglecting the damping of the base motion, the coupling term
(for example for a two metronome system) can be found

X =

o r,.(sin & +sin &,)

e |t can be analitically proven that metronomes synchronize [J.
Pantaleone, Am. J. Phys., 2002]



Systems that synchronize: a classical
example

Say's firefly, in the US

(Arnwin Provonsha, Purdue Dept of Enfomology, IN)

e Each firefly emits light flashes with
a regular internal cycle

e Each firefly adjusts its lighting
frequency as a function of its
neighbors

Fireflies flashing in sync on the river banks of Malaysia



Other examples

https://www.youtube.com/watch?v=eAXVa XWZ8
https://www.youtube.com/watch?v=W-nTO095Yy8
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../../../../../mattia/lucidi/viaggio nei sistemi complessi/opening_day_high.wmv
https://www.youtube.com/watch?v=eAXVa__XWZ8
https://www.youtube.com/watch?v=W-nTOo95Yy8

The Kuramoto model

e Dynamics of the oscillators (global coupling)
. N
3 =w +%Zsin(&lj ~9) i=1...N
j=1

e Order parameter N

r-e" =%Zeing

j=1
e Dynamics
$=w+K-rsinfw-9) i=1..,N




Coupled oscillators

* Equations

N
% =f(x)+o) aH(x,—x) i=1..N
=1

— fis the dynamics of each uncoupled unit (units are
identical), order n

— a;; are the elements of the adjacency matrix
— His a constant matrix (the inner coupling)
— o is the coupling coefficient

* Equivalent formulation

N
X =f(x)-o) LiHx i=1..N
j=1



Diffusive coupling

=1



Coupled oscillators - example

* Let us consider N Rossler units, coupled through two
different configurations...



The Rossler system

X=—y—1Z

y=X+ay o

2=b+2z(x-c)
o

a=b=0.2c=7

10}

20




Coupled oscillators - example
X = f(xi)—aZN: L;Hx; 1=1..,N

 N=3 Rdssler units, coupled through the second
variable, network as in figure

X, ==Y,—7
Yy =X +ay, +o(y,—V,)
1

2, =b+2z,(x,—cC)
2
3
X3 = —Y3— Z3

. X2 = =Y — Z;
V3 =3+ ays+o(y; —ys) Vo =Xy +ay, + 0(y1 — ¥2) + (3 — ¥2)
z3 = b+ z3(x3 — ¢) Zy, = b+ z,(xy — C)



Coupled oscillators - example

N
% =f(x)-o) LiHx, i=1..N
j=1

 N=3 Rdssler units, coupled through the second

variable, network as in figure

(1

0 0 0
0 1 0
0 0 0,

-1 0)

-1 2 -1

0

-1 1,




The synchronization error

* Synchronization error 1

e(t) = (N(N 1)lex(t) X(t)II)

 The network is (globally) synchronized if

lime(t) =0

t—>+o0

e Equivalent definition of the error
1

o) =| 2SI ) - %O I |
N-1%

th
" ()= XX



A network of Rossler oscillators

Xi =—Y; —Z

N
Yi =X +ay, _GZ Ly,
i1

Z.=b+z(x —C)
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The network, which was not synchronized for small coupling,
becomes synchronized for larger coupling



Same network, different coupling

N
&:_M_L_GZJﬂM
j=1

Yi =X +ay,
Z.=b+z(x —c)

o=0.75

25¢

Synchronization is never
achieved, even if the

%:Z | coupling strength is
| Wh uJ/ Ul increased!
D_J\U T 1 J}

20¢




Summing up...

 Two networks: one synchronizes for large enough

coupling strength, the other does not (for any
coupling strength)

 However, the coupling is always diffusive, and since
L1=0
the synchronous manifold x,=x,=...=x=X, exists in
both cases!

Xs = f(%s)

e What is the difference here?



Stability of the synchronous state

* Reference model '
X =f(x)-o> Lih(x;,) i=1..,N

* Synchronous state a

X, (1) =...= X (1) = s(t)
with

$= f(s)

 Compact form

X=F(X)—oL® I H(X)
where X, - f(x,) ] - Nh(x,) |

X=| : F(x)=| HX)=| :

XN R (;<N )_

_h(>.<N )_



Stability of the synchronous state

e Let’s define the new variables

17; () = %; (t) — s(t)

e Linearization around s(t)
n=(l, ®Df )n-c(L&®Dh)n

with
Of — of (x.) Dh — oh(x.)
, % X (D)=s(t) X X ()=s(t)
e Consider now
E=(T"®I,)n

with T such that
TLT =diag(4,,..., Ay)



Stability of the synchronous state

E=(T'® 1 )1, ®@DF)T®1)—o(T 1 )NLODh)(T ®1 )¢

\ 4

g=(1, ®Df)g—o(T'LT @ Dh)§

 Blocks are identical

& = (Df —oA,Dh)&,
* Master stability equation

¢ = (Df —aDh)¢
e Master stability function (MSF)
ﬂ“max — ﬂ“max (a)



The Master Stability Function
[Pecora and Carroll, 1998]

¢ =[DF +(ax+18)DH]c¢

Considering real
eigenvalues

(i.e. B=0)

Type |

Type il
Lot 7)<
\/ o VA, eigenvalue of L
Lﬂme [




The Master Stability Function
[Pecora and Carroll, 1998]

Type

Typelil

o
gwpe [

* Type |: networks never
synchronizable
* Type ll:
o>alA,
* Type lll:
oc>a,ll,
o<all,

Requires that:

A o
N < 2
A o




Network of Rossler oscillators

X ==Y, —Z Type Il
N
j=1
——— Z.=b+2z(x —C)
A, =0.1927
Ay =9.0672
. N Type Il
i =—Yi—4 _GZ; LijX; a, =0.186
|=
yi = X; +ay, o, = 4.614
2. =b+2z (X —cC
. (X, —¢) 263 N _ong

A1\



Control of synchronization

* A network of coupled chaotic oscillators may not satisfy the
conditions for synchronization (e.g., the eigenvalues of the

Laplacian are outside the bounds of master stability function,
MSF)

* Even for networks reaching synchronization, control may be
needed to steer the system towards a specific trajectory
(opposed to a self-organized solution)



How can we control a network?

Coupled dynamics

X = f(x;) + Uz a;jh(xj, x;)

J

Coupled dynamics with control

X.l' = f(Xl') + O'Z Clijh(Xj,Xi) +ul-

J

control

U = k(Xper — x;)

xref — g(xref)



Can we do better?

* Can we control the whole network by applying
feedback only to a subset of nodes?

s



Pinning control

* It is a feedback control strategy for
synchronization and consensus in complex
) X dynamical networks

* A virtual leader (the pinner) is added to
the network and defines the

desired trajectory, controlling only a small
fraction of the network nodes (the pinned
nodes)

* The control action is a function of the
pinning error vector, whose i-th
component is given by the difference
between the output of the pinner and the
output of the i-the node

* Classical pinning control targets a
homogeneous collective behavior



Pinning control of synchronization

Network units Jéi = f(xl-) + O'Z Clij(x]' — Xl') + U;; (i=1,..N

J)
Virtual node S = f(s)
Control u; = kd;(s — x;)
Pinned nodes 0; =1

L Augmented network, x,,,(t)=s(t)

.X.'l' =f(Xi)+ZWij (xj—xl-); 1= 1,,N+1
J



Pinning control of synchronization

xi =f(xl)+ZWl] (.X']—Xl), 1= 1,,N+1
J

Control is achieved iff the augmented network
synchronizes

lim “XL—X]”:O H 11m||xl—5||:O

t—+00 t—+00

F. Sorrentino, M. di Bernardo, F. Garofalo, and G. Chen, Controllability of complex
networks via pinning, Phys. Rev. E 75, 046103, 2007




Pinning control of synchronization

How to select the nodes to pin? Is there a relationship with some
topological properties?

 [Wang & Chen, Phys. A, 2002]: degree-based selective approaches
are a preferable strategy with respect to random choices of nodes.

 [Chen, Liu, Lu, TCAS I, 2007]: if the directed network admits a
spanning tree, then control can be achieved by only pinning the
root node.

* [Lu, Li, Rong, Automatica, 2010]: if the network does not admit a
spanning tree, then at least one node in each root strongly
connected component has to be pinned.



Control of synchronization in a group
of nodes

L. V. Gambuzza, M. Frasca, V. Latora, "Distributed control of synchronization of a
group of network nodes", IEEE Trans. Automatic Control, March 2019.



Problem statement

Consider the dynamical network formed by N diffusively coupled
identical nodes

N
X’i — f(X’i) —0 Z JC-'inXj + 1,
j=1

where x; are the state variable of node i, >0 is the coupling
strength and H is a nxn constant matrix of 0-1 coefficients, find the
network distributed controllers u, of the form

N
u;, = —0 E L:,?joXj
i=1

such that the nodes of an arbitrary set, say S,,, synchronize to
each other



Main result

Assumption 1. Consider the dynamical network (10). Sup-
pose that there exist a diagonal matrix C > 0 and two
constants d > 0 and 7 > 0, such that

DF(s(1)) — dH]"C + C[DF(s(t) — dF] < —1,
for all d > d.

Theorem 4.1: Consider the dynamical network (10) sat-
isfying Assumption 1, a set &,, of no arbitrary nodes,
and a fixed value of the coupling coefficient such
that ¢ > d/ny, then the synchronous state x, =

T T T T T . .y
[si()" ..o s, ()T s(t)t ... s(H)T] is stabilized
by the controllers u;

N
u, = —o Z E';jHXj (14)
j=1

with £" such that £ = £ + £’ satisfy these conditions:

) N | =...= Ny: from this condition it follows that
ky,+1 = ... = kp, that is, the nodes of &,,, have the
same degree, we indicate it as w, i.e., ky, 41 = ... =
kf\r = R, _

2) k 1s selected such that k > %;

3) the ns nodes are not connected each other.




For two nodes, A and B

if ‘NA UNB‘ >CZ/O’

if |INaUNB| <d/o Vo C (V(G) — Ny — N — {A, B}

NAUNB|+ Vo > CZ/O’

uy =0 > H(x;, —xa)+0 > H(x; —xa4)
JENB—-Na) JEV2

up =0 > H(x; —xp)+o0 >, H(x; —xp)
JENA—NB) jEV)



Sketch of the proof

Dynamical network with control

x=F(x)—ocL"®H-x

1. Linearization

n = DF-n—(L"®H)-n

2. State transformation

M~IRM = diag{\(R).....An(R)}



Sketch of the proof

Dynamical network with control

Df, 1 i 0 0 ...
Dfs
£ X0
£ = Df., {0 0 0 ...
Df. 0 ... 2L ... 0 K
Df. 0 ... 0 ... 0 K
Df.] 0 ... 0 ... 0

Dynamics of the transverse modes (the blocks are identicall!)

L]

(= (Df —orH)C



Remarks

" |t is not important to which nodes the nodes to synchronize
are connected but only their number

" The approach can also apply within the MSF framework

" The results can be extended to the case of heterogeneous
units, provided that the nodes to be synchronized have the
same dynamics



An example

o Chua’s oscillators

1 Nodes to synchronize: 4 and 12

Te s
.



An example

— d

oc=2, d=45 kx>—
O

\\\ K:3
"o
12
ug =0 >, H(x; — x4)
JE(N12—N4)={18}
iz =0 > H(x; — x12)

FE€E(WN1—N12)={3,14}




Without control

\LQ\/ M "KM'\M WM U«MWWW
'\ . I

For the given value of o, the network = 7| ] | (
without control is not synchronized ) ”‘ H

M ‘h r /\
W, M J/ il Wﬂ fm




With control

5f'(f)\/;§||x(f) o
( / 0 ZM i NW M MMNMu M
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t

'\ ] ea,12(t) =| xa(t) — x12(%) ||
.\ 0.35 - : - -
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L
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Control enables synchronization S 02
between node 4 and 12, while the rest o” 018
01
of the network remains not 005

synchronized 0 0 20 0 40 %0



With a direct link between nodes 4
and 12

19
6
N '

<\ &V' Ww

T
i
% 50 100 150 200 250 300
t
\\7 eq12(t) =|| x4(t) — x12(2) ||
.i 17 3 '
L 25! \

The introduction of a direct link between =15
nodes 4 and 12 is not sufficient to induce 1{

synchronization in them 05 MV Ji




Take home message

- Act on their neighbors!



Summary

* Examples of synchronization, models

* Synchronization of dynamical oscillators on
complex networks: existence and stability

e Control of synchronization: pinning control,
control of synchronization of a group of nodes



