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V=V(t) and/or E=E(t), with t=0,..

Temporal networks

observation)

"tmax

(window of

Without lack of generality, V may be considered

time-independent

Two representations:
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Do networks change in time?

e Zachary karate club: well-known example of a complex network,
benchmark for community detection, ... Is it a static or time-varying
network?




Do networks change in time?

Zachary karate club: well-known example of a complex network,
benchmark for community detection, ... Is it a static or time-varying
network?

And the Barabasi-Albert model?

Networks are subject to growth, aging, fluctuations, ...

It is a matter of which aspects we need to include in the model
So, ultimately it is a matter of time scales

There are no good or bad models. Models are always relative to
their goal



Disclaimer

. . | e s S
* | will focus here on synthetic models
: : - A Guide o lemporal
used in studies on synchronization Netwones

 Models (often data-driven) aimed at

- %" Naoki Masuda -

the characterization of the process of C T R

v. -l

link generation at nodes are
extensively reviewed in Masuda,
Lambiotte, Guide To Temporal
Networks, World Scientific.
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Modeling temporal networks

* Snapshot representation

t=t, t=t, t=t
) 1_, 2 1\ 2. 1
Q N 5 , 5 ( 5
>ﬁ\ 04 3§ 4 39 Q 4
* Adjacency matrix
A= A(t)

A;;(t) = 1 if attime t nodesiand j are connected by a link
A;;(t) = 0 othewise

* How A depends on time?



Blinking networks

A= A(s())

where s(t) is a switching sequence

* The switching sequence determines which links at
each time instant are switched on

 Example 1. At each time instant, the topology is
given by an ER network




Blinking networks

A= A(s())

where s(t) is a switching sequence

* The switching sequence determines which links at
each time instant are switched on

* Example 2. On-off coupling




Blinking networks

A= A(s())

where s(t) is a switching sequence

* The switching sequence determines which links at
each time instant are switched on

 Example 3. Some connections are switched, others
constitute the network fixed backbone



Activity-driven networks

A = A(a(t))
where a(t) models node activities

* Agents/nodes have an activity/firing rate ai
drawn from a probability distribution F(a)

— At each time step t, N disconnected nodes are
considered

— With probability a, each node becomes active
and links with m other randomly selected
individuals

— At the next time t+dt all the links are deleted
and a new step of the algorithm for link
generation is iterated

' * The model fits data from several social
networks (scientific collaborations, IMDB,
/

tweeter, ...)

Perra, N., Gongalves, B., Pastor-Satorras, R., & Vespignani, A. (2012). Activity driven modeling of time varying networks. Scientific Reports,
2:469 | DOI: 10.1038/srep00469.




Networks of mobile agents

A=Ay(t))
where y(t) are agent positions

‘ Aij(t) =1 < |lyi(t) —y;(t)]| =K.
L

A(f)=1< v’I(Yf-ﬂf} —y1(0)" + (yia(t) — y;2(0)” =R.

 Ris the sensing radius

 The model generalizes the R-disk spatial graph (also
known as random geometric graph)

 Beyond the connectivity criterion, the rule of motion
needs also to be specified



Rule of motion

e Agent velocity: fixed modulus, variable

heading
‘ vi(t) = velil®),
* With probability p;, agents jump into random
L positions
Vit + i) = &iltw).
\ * With probability 1-p;, agents move as random
walkers

Vi(ty + ™) = yi(tk) + mmVi(tk ),
Oi(te) = mite).



An interesting property of the model

Small-world effect vs. probability of jumps
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Metric vs. topological connectivity
criterion

| J
v

i and j are connected if at a i is connected with its first
distance smaller than R m nearest neighbors
P
T‘f
-& % kd
7’71
el
-&
= §




Adaptive networks

e Structure and dynamical states coevolve

* Dynamics of the weights:

Aij(®) = f(x;(8), %, ()

* Reshaping the interactions as a function of the
environment
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Stability of the synchronization
manifold in temporal networks

* Dynamics
f(xi) — EZEU
* Linearization around the synchronlzatlon manifold

SX(t) = [Iv ® Jf(xs) — £(t) ® Jh(xs)|8x(t),
 Modes are not decoupled

dn;(t)
dt

= [If(xs) = et Yh(xs)]mi(t)

Becomes zero, if

 The network is static

* L(t;) commutes with
L(t,) and so on...



A general criterion: dynamics under
fast-switching

e Fast Switching Hypotesis (FSH):

If t+T

-1
I L:Tf L(t)dt admits synchronization
t

ii. switching between all the possible networks is sufficiently
fast

then the network L(t) will synchronize.

e Hypothesis i. can be checked using the MSF approach

Stilwell, D. J., Bollt, E. M., & Roberson, D. G. (2006). Sufficient conditions for fast switching synchronization in time-varying network
topologies. SIAM Journal on Applied Dynamical Systems, 5(1), 140-156.
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Blinking networks

e Network of Rossler oscillators

y 1
Xi(t) = —yi(t) — zi(t) — € Zﬁfj(f}xj‘(f)* -

=1
yi(t) = x;(t) + ay;(t), o
zi(t) = b 4+ z(t)(x;(t) — ¢), 0 0.0 002 0.03

max

0 0.01 0.02 0.03
S

* Higher rewiring probability enhances synchrony
* Prediction possible in the fast switching regime



Contents

* Models of temporal networks

e Case studies of synchronization in temporal
networks

— blinking networks

— activity driven networks

— networks of mobile agents
— adaptive networks



Activity-driven networks: prediction
under fast-switching

t+T

M
L :%f L(t)drt - L =%;L(tk)

t

- for Iarge T ZJU = Dij

p; - probability that i and j are connected at a given time

For activity driven networks:

)




Activity-driven networks

_ N ADN with N=200, m=5, F(a)
Xi(t) = —yilt) —zi(t) — € Z Li(E)x;(t), power law with y=-2.1
m i(f) t) + ayi(t), a Measure:
o :  Time to synchronization

“ (t) —b+z, (£)(x:(t) — ¢)
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Windows of opportunity

* For intermediate switching frequencies there are
regions where synchronization is stable in the
temporal network, but unstable in the time-average
structure (and so in the fast switching regime)

e Other temporal networks show the same behavior

* Interplay between two time-scales, that for local
synchronization and that for network reconfiguration
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Networks of mobile oscillators

* Consider the case of N=2 moving chaotic agents

_____

__________

yl — f(yl ) + K(Ey2 o Ey]_ ) The i_ntera'ction netwlfrk is a
y, =1(y,)+K(EYy, -Ey,)



Network configurations for N=2

HO

&

-
>

G = PGy + PAGA = PAG,

* p,acts as a coupling parameter =

the non-zero eigenvalue of (5 is

Not neighbor with
probability p,

Neighbor with probability
p=mr?/L2

A=2p,



Network configurations for N=3

OW ~

000
G,=|0 0 0
000

©

&

G +G,+G,=2G,

® O

Pr= P, =P

0O O
' GlZ + Gz3 T Gl3 = GA

P = Py = Pi3




Network configurations for N=3

G +G,+G,=2G, G,+G,+G, =G,

PL= P, =Ps P = Paz = Pys

G A+ B55o @2 + PiGis + PGy
pl + sz + PG

= PaG,+ P(G, +G, +G;) + P (G, + G +G,) =

=(Pa+2p,+ P)GA= PG,

* p acts as a coupling parameter 2

the non-zero eigenvalue of 5 IS A=3 P



Synchronization conditions under FSH

For N agents =2 §=DGA A = pN =£N =7ZT2,0

0.2

+ KN €la,,0,] 5 P

a]_ 01}
7 2 K Foz

03+

= L0>p =

045

05+

° KN > az =85 2 4 ) 6 8 10

o, a,

— < p<
- =P <P =L

M. Frasca, A. Buscarino, A. Rizzo, L. Fortuna, S. Boccaletti, “Synchronization of moving chaotic agents”, Physical Review
Letters, 100, 044102-1-4, 2008.




Synchronization conditions under FSH

1 S i 1 i 1 i 1
S(t) = 3N D ZQxl —lex2 —x2‘+‘x3 —XSD

=2

° K =1 T Identical 2— ’
- v Non-identical -
a :
p. =——=0.07 | g -
& i 2 K @ “ 05
& 15} % 0.15
1L
e K=10

o5tk

0
0 002 0.04 006 008 01 012 0.14 016
p

P = ~ (0.1299 N=2, Aty=At,=1073, v=1,r=1
2




Synchronization conditions under FSH

& — o, — critical values do not

Po, <P <Py, =
7zr2K " 2 7Zr2K depend on N

<d=>

L] - e [N} - [ |48} —- M [
T T T T T

<d>

<d>

At,,=At =103, v=1,r=1, K=10



Sustained oscillations in living cells [Dano et al.
Nature, 1999]

letters to nature
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Sustained oscillations in living cells
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“Synchronized bulk
oscillations depend on
a sufficiently high cell
density”
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Adaptive networks: weight evolution

Dynamics N
f(x +Zwu )(h(x;) — h(x;)),

=1
Dynamics of the welghts

wij = 1 || h(x;) — h(x;) |

Global asymptotic stability via Lyapunov techniques if
the function f is QUAD + (mild) conditions on the

network %

(&)
(&)
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Adaptive networks: edge snapping

Dynamics N
Xi = (%) + €Y wi(t)(h(x)) — h(x;)),
Dynamics of the weight | ;
Wij + Y Wwij + EV(H’EJ) = g(ej).
Error function
g(ej) = [xj—xi||*

Potential function
V(wyj) = bwji(w — 1%,



Summary

* Only a few examples of temporal networks

e Variety of behaviors, due to the interplay
between the time scales at work in the system

e Adaptivity: engineering the system to achieve
synchronization



