
Lecture 5 – Synchronization in 
temporal networks

Mattia Frasca (Univ. of Catania)



Contents

• Models of temporal networks

• Case studies of synchronization in temporal
networks

– blinking networks

– activity driven networks

– networks of mobile agents

– adaptive networks



Contents

• Models of temporal networks

• Case studies of synchronization in temporal
networks

– blinking networks

– activity driven networks

– networks of mobile agents

– adaptive networks



Temporal networks

• V=V(t) and/or E=E(t), with t=0,…,tmax (window of 
observation)

• Without lack of generality, V may be considered
time-independent

• Two representations:

Event-based Snapshot

𝐴 = 𝐴(𝑡)



Do networks change in time?

• Zachary karate club: well-known example of a complex network, 
benchmark for community detection, … Is it a static or time-varying
network?
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• And the Barabasi-Albert model?

• Networks are subject to growth, aging, fluctuations, …

• It is a matter of which aspects we need to include in the model

• So, ultimately it is a matter of time scales

• There are no good or bad models. Models are always relative to 
their goal 



Disclaimer

• I will focus here on synthetic models
used in studies on synchronization

• Models (often data-driven) aimed at
the characterization of the process of
link generation at nodes are
extensively reviewed in Masuda,
Lambiotte, Guide To Temporal
Networks, World Scientific.



Modeling temporal networks

𝐴 = 𝐴(𝑡)

• Snapshot representation

• Adjacency matrix

• How A depends on time?

𝐴𝑖𝑗 𝑡 = 1 if at time t nodes i and j are connected by a link

𝐴𝑖𝑗 𝑡 = 0 othewise



Blinking networks

where s(t) is a switching sequence

• The switching sequence determines which links at
each time instant are switched on

• Example 1. At each time instant, the topology is
given by an ER network

𝐴 = 𝐴(𝑠(𝑡))
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Blinking networks

where s(t) is a switching sequence

• The switching sequence determines which links at
each time instant are switched on

• Example 2. On-off coupling

𝐴 = 𝐴(𝑠(𝑡))
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Blinking networks

where s(t) is a switching sequence

• The switching sequence determines which links at
each time instant are switched on

• Example 3. Some connections are switched, others
constitute the network fixed backbone

𝐴 = 𝐴(𝑠(𝑡))
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Activity-driven networks

where a(t) models node activities
𝐴 = 𝐴(𝑎(𝑡))

• Agents/nodes have an activity/firing rate ai 
drawn from a probability distribution F(a)

– At each time step t, N disconnected nodes are 
considered

– With probability ai each node becomes active
and links with m other randomly selected
individuals

– At the next time t+dτ all the links are deleted
and a new step of the algorithm for link 
generation is iterated

• The model fits data from several social 
networks (scientific collaborations, IMDB, 
tweeter, …)

Perra, N., Gonçalves, B., Pastor-Satorras, R., & Vespignani, A. (2012). Activity driven modeling of time varying networks. Scientific Reports, 
2 : 469 | DOI: 10.1038/srep00469.



Networks of mobile agents

where y(t) are agent positions
𝐴 = 𝐴(𝑦(𝑡))

• R is the sensing radius

• The model generalizes the R-disk spatial graph (also
known as random geometric graph)

• Beyond the connectivity criterion, the rule of motion
needs also to be specified



Rule of motion

• Agent velocity: fixed modulus, variable
heading

• With probability pj, agents jump into random 
positions

• With probability 1-pj, agents move as random 
walkers



An interesting property of the model

Small-world effect vs. probability of jumps



Metric vs. topological connectivity
criterion

i and j are connected if at a 
distance smaller than R

i is connected with its first 
m nearest neighbors



Adaptive networks

• Structure and dynamical states coevolve

• Dynamics of the weights:

• Reshaping the interactions as a function of the 
environment

ሶ𝐴𝑖𝑗(𝑡) = 𝑓(𝑥𝑖 𝑡 , 𝑥𝑗 𝑡 )
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Stability of the synchronization
manifold in temporal networks

• Dynamics

• Linearization around the synchronization manifold

• Modes are not decoupled

Becomes zero, if
• The network is static
• L(t1) commutes with 

L(t2) and so on… 



A general criterion: dynamics under 
fast-switching

• Fast Switching Hypotesis (FSH):

If

i. admits synchronization

ii. switching between all the possible networks is sufficiently

fast 

then the network L(t) will synchronize.

• Hypothesis i. can be checked using the MSF approach

Stilwell, D. J., Bollt, E. M., & Roberson, D. G. (2006). Sufficient conditions for fast switching synchronization in time-varying network 
topologies. SIAM Journal on Applied Dynamical Systems, 5(1), 140-156.
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Blinking networks

• Network of Rӧssler oscillators

• Higher rewiring probability enhances synchrony

• Prediction possible in the fast switching regime
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Activity-driven networks: prediction
under fast-switching
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pij - probability that i and j are connected at a given time

For activity driven networks:



Activity-driven networks
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Measure:

• Time to synchronization



Windows of opportunity

• For intermediate switching frequencies there are 
regions where synchronization is stable in the 
temporal network, but unstable in the time-average
structure (and so in the fast switching regime)

• Other temporal networks show the same behavior

• Interplay between two time-scales, that for local
synchronization and that for network reconfiguration
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Networks of mobile oscillators
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• Consider the case of N=2 moving chaotic agents

The interaction network is a 
time-varying network



Network configurations for N=2
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Network configurations for N=3
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Network configurations for N=3

AGGGG 2321 =++ AGGGG =++ 132312

=+++

+++++=

332211

23231313121200

GpGpGp

GpGpGpGpGpG AA

321 ppp ==
132312 ppp ==

=++++++= )()( 231312123211 GGGpGGGpGp AA

AAA pGGppp =++= )2( 121

• p acts as a coupling parameter →

the non-zero eigenvalue of         is G p3=



Synchronization conditions under FSH

For N agents →
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Synchronization conditions under FSH

Rossler MSF
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Synchronization conditions under FSH

DtM=Dts=10-3, v=1,r=1, K=10
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Sustained oscillations in living cells [Dano et al. 
Nature, 1999]

“Synchronized bulk 
oscillations depend on 
a sufficiently high cell 
density”
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Adaptive networks: weight evolution

• Dynamics

• Dynamics of the weights

• Global asymptotic stability via Lyapunov techniques if
the function f is QUAD + (mild) conditions on the 
network



Adaptive networks: edge snapping

• Dynamics

• Dynamics of the weight

• Error function

• Potential function



Summary

• Only a few examples of temporal networks

• Variety of behaviors, due to the interplay
between the time scales at work in the system

• Adaptivity: engineering the system to achieve
synchronization


